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In this work we show that some properties of a potential energy surface are not 
independent of the choice of the coordinate frame. So the reaction pathway 
often described as steepest descent way does not correspond to an invariant 
curve under coordinate transformations. We propose an internal intrinsic 
reaction pathway by using some quasi-dynamical considerations (like instan- 
taneous internal acceleration). Our work precises the intrinsic-reaction co- 
ordinates of Fukui to any set of 3 N - 6  internal parameters. Finally, from the 
equations of motion we deduce the form of the normal reaction coordinates 
frame anywhere along the postulated reaction pathway. 
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1. Introduction 

A lot of potential surface studies use the concept of reaction pathway, but this 
notion remains confused [1]. If everybody agrees with the fact that the reaction 
pathway is a curve on the potential energy surface which connects the reactants 
and the products through the transition point, and that this curve has no dynamical 
significance, the discussion is not closed concerning this concept. Commonly for 
many works [2] it is accepted that the reaction pathway follows the bottom of a 
valley. First Laidler and Murell show that any transition point must correspond 
to a minimax of first kind [3]. McIver and Komornicki summarize the minimal 
requirements for the transition point and the reaction pathway [4]. Later Stanton 
and McIver make some remarks concerning more complex saddle points (like 
monkey-saddles) and concerning the invariance of the force constant matrix at the 
transition point [5]. McCullough and Silver [6] show that the steepest descent way 
on potential energy surface is more useful for describing the reaction pathway 
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than the notion of minimum energy path [7]; the former way meets the require- 
ment of kinkless curve given by Marcus [8]. Finally Fukui et al. [9] propose the 
intrinsic reaction coordinate in order to follow the reaction pathway by using the 
weighted cartesian coordinate frame. 

In the present work we will try to define for any set of internal coordinate system 
the concept of reaction pathway and to clarify such a notion. 

2. The Potential Energy Surface and the Internal Coordinate Systems 

If N is the atom number of the chemical system of interest (the molecule or 
the supermolecule), the potential energy E may be expressed as a function of 
3 N - 6  [10] internal coordinates (ol, a2 . . . . .  / J3N-6)  components of the vector o; 
thus, 

E = E(~).  (1) 

In order to avoid a kink we assume that o is continuous in the whole space domain 
[11]. Anywhere 9n the potential energy surface we can compute the gradient 
vector go and the force constant matrix Ho with respect to the internal coordinates 
o [12]: 

go = VoEo, (2a) 

Ha = VoV'oEo, (2b) 

where the subscript o indicates that the function or the operator  is given in terms of 
the variables o, and the superscript ' stands for the transposition operation. 

Let  us now change the coordinate frame and define a new set v related to ~ by the 
transformation 

o r  

= P v  (3a) 

v = P- lo .  (3b) 

This expression is always valid for infinitesimal displacements although it may be 
nonlinear as well as nonorthogonal.  According to the chain rule [13] the deriva- 
tives with respect to o are bonded to those with respect to v by the relations: 

g~ = P 'go ,  (4a) 

H~ = P ' H o P .  (4b) 

The g's are vectors of 3 N -  6 components;  they correspond to the same direction 
in ~ or v only if go and gn are connected to each other by the same transformation 
as a vector. Comparing Eq. (4a) to (3b) we find that to meet  this requirement,  P-~ 
must equal P'.  That  means ~ and v coordinate frames are related by a unitary 
transformation: 

P ' P  = E .  (5) 
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Similarly the H's are tensors of ( 3 N - 6 )  x (3N - 6 )  components; Ho and H~ may 
be transformed to each other like a tensor only if we meet the same restriction [5]. 
Thus, if we want to, define the reaction pathway as "the steepest descent way for 
going from the transition point to the reactants or to the products", the reaction 
pathway (which so follows the gradient direction) is not invariant according to any 
set of coordinates. Nevertheless the location of any stationary point remains the 
same; even if P is not a unitary transformation, Eq. (4a) shows that anywhere 
go is zero go is also zero. The points which characterize the reactants, the products 
(two absolute minima) or the transition structure (a minimax of first kind [3]) are 
invariant with respect to the coordinate frame. As an example, we show in Fig. 1 
the steepest descent pathways for the collinear reaction D + HF-~ DH + F [14] in 
the following coordinate systems: 

"~ '= (RDH, RHF) 

v'= (O2, Ol). 

s.o! 
RHF 

2.5- 

2,. 

1.5 - -  

DH+F 

Steepes{ descen{ pathway in 
coordinates s 

Steepes{ descen{ pathway in 
coordinates v 

1.40 

'i.8~ 1.6 

1,5 2.0 2:5 RDH (a.uT 

2,s ~ , u J  4 .74 / ,~H+~7" ' "  (b~ 
Q2 ~ ~ r  ansition point 

4.0 4.5 5,0 5.5 ~1 (a.u) 

Fig. 1, Steepest descent pathway for the collinear D +HFreaction [13]. (a) Eo potentia/energysurfaee 
description; (b) E~ potential energy surface description, 
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is an ordinary internal coordinate system and v is a coordinate system which 
diagonalizes the kinetic energy [15]. 

This figure shows that the steepest descent way is orthogonal to the isoenergy 
curves only when the potential energy surface is described in the same coordinate 
frame as the one used to build the steepest descent way. 

As already shown by Stanton and McIver [5] the nature of any stationary point 
(minimum or minimax in particular) must be invariant in any kind of non- 
redundant  coordinate frame (det (P) # 0); using Eq. (4b) it comes out, 

det (Hv) = det (Ha)" det 2 (P). (6) 

As long as Ho does not have zero eigenvalues the sign of the determinants of Ha 
and Hv must be identical. Moreover  we always can regard v as having evolved 
continuously from 6, then the number of negative or positive eigenvalues of Ho 
and Hv must remain constant; that means that the nature of a stationary point is 
invariant under coordinate transformation. The existence of zero eigenvalues of 
the H matrix has been excluded by some authors [3-5] for interacting atoms or 
molecules. In the asymptotic region of dissociation stich accident is nevertheless 
observed. In this case the H matrix can be partitioned and the last discussion 
remains valid for any part of H which does not correspond to zero eigenvalues. 

3. The Internal Intrinsic Reaction Pathway 

The internal acceleration of a system of points corresponds to the evolution 
capability of the system for a zero instantaneous velocity. In order to find the 
expression of the acceleration vector, let us write the equations of motion in terms 
of coordinates ~. Anywhere on the potential energy surface we can develop E(~) in 
Taylor 's series. We truncate the expansion to the second order assuming that any 
surface part close to a point of interest has a quadratic form. Then introducing the 
internal displacements s with respect to the expansion origin we have, 

r 1 t E(s)  = Eo+ gos + ~s Hos, (7) 

with s = o - ~o. 

The kinetic energy can be expressed in terms of internal displacements if we are 
using the Wilson's G matrix [16-17]: 

2 T  = ~'G~I~. (8) 

According to Eq. (7) and (8), the Lagrangian equation 

d o T  OE 
- -  - - + - - =  0 
dt O~ Os 

becomes: 

G21g+go+Hos =0 ,  
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or, left multiplying by G~, we have 

Y + Gogo + G~h~s = 0. (9) 

Such an expression is invariant with respect to any set of coordinate frame because 
~, G ,g ,  and G,H~s are always transforming like vectors. Indeed from (8) and (9) 
we see that 

Gv = P-1Gop-r ' .  (10) 

Then Eqs. (4) and (10) give 

G~g~ = p-1G~go; (11) 

GoH~ = P - 1 GoH~P. 

For an infinitesimal displacement from the origin of the potential energy expan- 
sion (s ~ 0) we can 'write 

~'~ -G~go for go ~ O, 
(12) 

g ~ - G~Hos for go = 0. 

If we start at the transition point we can define a unique curve with respect to any 
set of coordinates but mass depending by following anywhere the direction given 
by g. Such a curve connects the transition point to the reactants and to the 
products. It is kinkless as long as s frame, potential surface E ( s )  and B matrix are 
continuous. Then this curve may be chosen as the reaction pathway. Near the 
reactant or the product points it corresponds to the nuclear vibrational motions 
and generalizes the ideas of Swanson [18]. Our reaction pathway definition is 
similar to the one c f Fukui et al. [9]. They use as coordinates the 3 N  weighted 
cartesian coordinates (q) instead of the 3 N -  6 internal ones (s). In such a case Gq 
is the unity matrix E and 4 = -gq. We may then follow the - &  direction. The main 
advantage of our purpose is to propose a general way to follow the intrinsic 
reaction coordinate of Fukui in any set of 3N - 6 internal coordinates. This paper 
may also be considered as a more simple approach to the reaction pathway 
problem compared to the work of Tachibana and Fukui [23] who are using 
differential geometry. 

Practically to find the reaction pathway we will apply the following algorithm: 

(1) Starting from transition point s~ we do a small step towards the reactants (or 
towards the products) in the eigendirection K*,  which corresponds to the negative 
eigenvalue of the G H  product;  so we are leaving the stationary point. The first 
displacement is given by 

e 2K* 
s~  ~ = s~ ~: ( K , , K , ) I / 2 ,  (13) 

where the scalar e 2 stands for an infinitely small quantity and the product 
( K * ' K * )  1/2 is used in order to normalize each step at the value of e 2. 
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(0) (2) From the new point s+ we follow down the direction defined by the vector 
- Gg; thus we have 

s(i+l) s ~ ) _  eZ(Gg)i  
+ = (g,G,Gg)~/2.  (14) 

(3) We stop the search if the gradient norm (g,g)l/z is sufficiently close to zero or if 
the current energy tends to the energy of the reactants or to that of the products. 

The first step implies the problem of diagonalizing the G H  matrix at a stationary 
point. If both G and H are symmetrical matrices their product is in general 
unsymmetrical. The common diagonalization processes (Jacobi, Givens-  
Householder  . . . .  ) are unallowed. As coordinates which diagonalize G, give also a 
diagonal form to the kinetic energy (see Eqs. (8) and (10)), it comes out that G is a 
positive defined matrix [19]. In such a case G a/2 matrix can be easily found by: 

G 1/z = U ~  1/2 (15) 

where h stands for the diagonal matrix of the G eigenvalues and U stands for the 
square matrix of the G eigenvectors. 

As usually done [20] we are now able to define a similarity transformation in 
order to diagonalize the G H  product [21]. Multiplying G H  left by G -1/2 and right 
by G 1/2 we find for the symmetrical matrix (HR), 

HR = G ' I / 2 H G  1/2. (16) 

This matrix has Y as eigenvectors and A as eigenvalues if 

Y ' H R Y  = A, (17) 

with 

Y ' Y  = E .  

Using the current notation [16-22] the eigenvectors L of G H  become 

L = G 1/2 Y (18a) 

and 

L -1 = K = Y ' G  -a/2. (18b) 

In fact the similarity transformation corresponds to the definition of a new 
coordinate frame R such that 

R = G-1/2s, (19) 

in which set we write the matrix GsHs, by applying Eq. (4b) and we get the 
expression (16). 

The present algorithm applied to the earlier mentioned example D + H F  [13] 
gives as reaction pathway that of Fig. lb  (or the corresponding dotted line on 
Fig. la). In such a case we can easily verify that go must correspond to the same 
direction as Gsg~. 
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Finally, one should not confuse the present definition of the reaction pathway with 
any possible trajectory (in dynamical meaning). In fact we exclude from our 
considerations the rotation of the whole system: as coriolis coupling terms exist, 
the vector g is not free from rotational influence [22]. Moreover  at any step of our 
algorithm we keep (artificially) the instantaneous velocities to zero. In the 
dynamical process we have: 

~.(,+1) = - ( O g ) ,  

if 

g(i+ l) = i( i )_ ( Gg )it (20a) 

and 

t 2 
s (i+1~ = s (i) + ~ ( ~  (Gg) i~  (20b) 

instead of Eq. (14). That means that ~(i) always remains zero. 

4. The Normal Reaction Coordinates Frame 

The Gs& vector defines anywhere on the internal intrinsic reaction pathway only 
one direction in the 3N - 6 dimensional coordinate space. Our purpose is now to 
find the 3 N - 7  remaining space directions in order to have at our disposal a 
complete set of coordinates. So let us write Eq. (9) in the frame R defined by Eq. 
(19); it comes out from Eqs. (4a), (4b), (9), (16) and (19), 

ff~+gR + H R R  = 0; (21) 

by applying Eq. (17) we find 

ff'+gR + Y A Y ' R  =0 .  (22) 

Left multiplying by Y' we', can write: 

O + g o + A O = O ,  (23) 
where 

0 = Y ' R  (24) 

go = Y '  gR. 

AS A is a diagonal square matrix, Eq. (23) corresponds to a set of 3 N - 6  
uncoupled second order inhomogeneous differential equations and the O's  define 
a normal coordinate frame which at any stationary point becomes the normal 
vibrational coordinates. Further as a unitary transformation (Y) connects the O 
and R frame the directions go and gR are identical and as the kinetic energy has a 
diagonal form in () frame (2T = 0 ' O )  we easily understand why Fig. lb  cor- 
responds to the general intrinsic reaction pathway. 

Close to any stationary point as we follow one of the GsH~ eigendirections, the go 
components are all zero except one, that which corresponds to the reaction 



152 M. Sana et al. 

pa thway .  Such a cons t ra in t  r ema ins  val id  anywhere  on the  r eac t ion  p a t h w a y  as 
long as the  r eac t ion  p a t h w a y  fol lows the  b o t t o m  of a val ley.  If the  po t en t i a l  ene rgy  
surface  does  no t  p e r m i t  to  sat isfy this r e q u i r e m e n t  the  r eac t ion  p a t h w a y  d i rec t ions  
(def ined by  -go) m a y  have  m o r e  than  one  no nz e ro  c o m p o n e n t s .  A t  this t ime  go 
does  no t  r e m a i n  e igenvec to r  of Ho; never the less  the  c o r r e s p o n d i n g  d i rec t ion  m a y  
be  kep t  as r eac t ion  p a t h w a y  def ini t ion.  

.5. Conclusion 

Using  any set  of in te rna l  coo rd ina t e s  for  a chemica l  sys tem,  we may,  by  a first 
inves t iga t ion  of the  po t en t i a l  ene rgy  surface,  d e t e r m i n e  the  loca t ion  and  the 
na tu re  of s t a t i ona ry  points ,  and  consequen t ly  the  ac t iva t ion  ba r r i e r s  and  the  
r eac t ion  energy.  

If fu r the r  we wan t  to  cha rac te r i ze  the  r eac t ion  pa thway ,  r a the r  than  fo l lowing the  
energy  g rad i en t  wi th  r e spec t  to  the  p r eced ing  c oo rd ina t e  set, we m a y  use the  
concep t  of in te rna l  acce le ra t ion .  S ta r t ing  at  the  t rans i t ion  s ta te ,  we let  evolve  the  
in te rna l  coo rd ina t e s  at  a ze ro  veloci ty ,  t ak ing  account  of the  masses  of the  
d i f ferent  par t ic les .  A l o n g  the  r eac t ion  p a t h w a y  so def ined  we can find a set  of 
n o r m a l  coord ina tes ,  each  assoc ia ted  with a local  n o r m a l  m o d e  of mot ion .  T h e  
reac t ion  p rocess  itself c o r r e s p o n d s  to one  pa r t i cu la r  n o r m a l  m o d e  of mot ion ,  
p r o v i d e d  tha t  the  g rad i en t  po t en t i a l  vec to r  (in t e rms  of n o r m a l  coord ina tes )  has 
one  nonze ro  c o m p o n e n t  a long  the  intr insic  r eac t ion  pa thway .  
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